КнигиНасколько маленькими могут быть компьютеры
И зачем вообще нужно их уменьшать
Каждую неделю Look At Me публикует отрывок из новой нон-фикшн-книги, выходящей на русском языке. В этот раз мы представляем книгу Джона Фарндона «Вопрос на засыпку», в которой собраны каверзные вопросы со вступительных экзаменов в университеты Оксфорда и Кембриджа. Книгу выпустило издательство «Манн, Иванов и Фербер».
Насколько маленьким
вы можете сделать компьютер?
(Инженерное дело, Кембридж)
Над этим вопросом в последнее время много думали разработчики компьютеров, и короткий ответ таков: очень-очень маленьким. Уже в 2013 году удалось создать полностью рабочий компьютер размером с песчинку. Его разработали для того, чтобы поместить прямо в глаз для мониторинга глаукомы, и потому остроумно назвали «микросучком», имея в виду известное библейское выражение (И что ты смотришь на сучок в глазе брата твоего, а бревна в твоём глазе не чувствуешь?» (Матфей 7:3)). Он включал в себя процессор, устройство для хранения данных и даже модуль беспроводной связи. В качестве источника питания использовались солнечные батареи, работающие за счёт попадающего в глаз света.
В процессе реализации европейского проекта Pico-inside был создан логический элемент гораздо меньших размеров. Его вычислительная мощь эквивалентна 14 транзисторам, и он состоит всего из 30 атомов. Это не только значит, что его нельзя увидеть в оптический микроскоп, — он слишком мал для того, чтобы его можно было увидеть при помощи чего-либо, кроме самых мощных туннельных сканирующих микроскопов. Внутрь упомянутого ранее «сучка» можно поместить около квинтиллиона таких процессоров!
Ещё в конце 1960-х годов основатель компании Intel Гордон Мур заметил интересную закономерность. В 1958 году два транзистора были соединены в интегральную схему на кристалле кремния, так появился первый кремниевый чип. С тех пор, как отметил Мур, количество транзисторов, помещающихся в одном чипе, удваивается каждый год. Поэтому электронные устройства каждый год уменьшаются в соответствии с законом Мура.
В последнее время темп миниатюризации снизился, и количество транзисторов удваивается каждые два года. Но всё же мы смогли создать «умные» устройства, которыми сейчас пользуемся, — планшеты и телефоны, — обладающие вычислительной мощью суперкомпьютеров недавнего прошлого. Каждый раз, когда кто-то утверждает, что миниатюризация достигла своего предела, проектировщики компьютеров умудряются вместить их в ещё меньший объём. Вопрос в том, сколько ещё мы сможем их уменьшать и зачем нам нужно что-то ещё меньшее.
Кажется, что мы действительно достигли предела возможностей обычных транзисторов. Они уже уменьшились до нано-размеров — миллиардных долей метра (размер вирусов). Дальше могут возникнуть проблемы. Транзисторы работают как вентили, включающие и выключающие поток электронов. Они сделаны из полупроводников, которые способны пропускать электроны или блокировать их. Но когда размер барьера уменьшается до нанометров, начинают проявляться квантовые эффекты. В частности, возникает туннельный эффект. Он заключается в том, что электрон проходит сквозь барьер так, будто бы его нет. (На самом деле он не проходит, а исчезает с одной стороны барьера и появляется с другой.) Если вентили не в состоянии преградить путь потоку электронов из-за туннельного эффекта, транзисторы просто не могут работать. Сейчас самые маленькие транзисторы имеют размер около 30 нм, так что этот предел скоро будет достигнут.
Главная проблема всех нанокомпьютеров не в вычислительной мощности, а в дополнительных устройствах
Транзисторы представляют собой логические элементы, от которых зависят вычисления: «да/нет», «и/или», 0/1. Если транзисторы достигнут своего предела, можно ли будет построить логику на альтернативных элементах, устойчивых к проявлению квантовых эффектов? Именно над этим вопросом работает команда проекта Pico-inside и другие исследователи.
Вместо того чтобы пытаться впихнуть как можно больше вычислительной мощности в минимальный объём, они начали с противоположной стороны и создали компьютер из атомов, чтобы использовать преимущества квантовых эффектов, а не устранить их. При постройке компьютера они применяли атомные силовые микроскопы, с помощью которых помещали атомы в нужное место. На данный момент, кроме логического элемента из 30 атомов, учёным удалось собрать из атомов шестерёнки, колёса и даже двигатели, каждый из которых представляет собой одну молекулу. До того, чтобы собрать полностью рабочий компьютер, ещё далеко, но возможность этого очевидна.
Главная проблема всех нанокомпьютеров не в вычислительной мощности, а в дополнительных устройствах. Как обеспечить для них питание? Как их охлаждать? Как они смогут взаимодействовать с другими устройствами? Бессмысленно создавать компьютер размером с молекулу, если затем понадобится в триллион раз больший модуль беспроводной связи и огромный аккумулятор или солнечная батарея. И, разумеется, солнечные батареи не будут работать в темноте. Именно эти проблемы предстоит решить, чтобы нанокомпьютеры стали реальностью.
Ещё более впечатляющих результатов можно добиться, если отказаться от обычных логических элементов на транзисторах в пользу квантовых вычислений. При этом целью будет не дальнейшее уменьшение компьютера, а использование силы квантовых эффектов для достижения высоких скоростей обработки информации. Для создания такого компьютера нужно уменьшить элементы настолько, чтобы вступили в силу квантовые эффекты, то есть до размера атома, электрона или даже фотона. Если квантовые компьютеры будут когда-либо построены, они станут использовать атомные и субатомные частицы в качестве рабочих элементов.
Смысл в том, что вместо обычных битов, способных принимать значение 0 и 1, можно будет использовать квантовые биты, или кубиты, которые находятся в состоянии суперпозиции и могут принимать значение 0 и 1 одновременно. В обычном компьютере биты должны менять своё состояние последовательно. При использовании кубитов все вычисления могут выполняться одновременно. Это значит, что такой компьютер станет решать задачи в миллионы раз быстрее обычного за счёт параллельной работы над задачей.
В 2014 году канадская компания D-Wave попала на обложку журнала Time с устройством, которое её сотрудники объявили первым коммерческим квантовым компьютером. Эта машина размером с большой шкаф — и она работает, — но никто не уверен, действительно ли она представляет собой квантовый компьютер. Также никто не уверен, что такой компьютер может принести какую-либо пользу. Предполагается, что он способен помочь банкам быстрее проводить финансовые операции при помощи сверхбыстрых вычислений, но зачем он нужен всему человечеству, пока неясно.
Устройства размером с ваш телефон смогут очень сильно увеличить свою вычислительную мощь и будут способны делать фантастические вещи
Это одна из проблем маленьких компьютеров: какова цель? Зачем нужен компьютер размером с песчинку, если легко потерять дома даже обычный сверхплоский телефон? На этот вопрос есть по меньшей мере два ответа.
Во-первых, устройства размером с ваш телефон смогут очень сильно увеличить свою вычислительную мощь и будут способны делать фантастические вещи, на которые они не способны в настоящий момент. Некоторые критики, впрочем, говорят, что это неправильный взгляд на мир. Не нужно увеличивать мощность отдельных компьютеров. Вместо этого следует улучшать связь, так чтобы вычислительная мощь всех компьютеров, объединённых в сеть, использовалась одновременно, как в случае облачных вычислений. При этом мощность вашего индивидуального терминала может быть небольшой, но он станет использовать всю мощь «облака».
Во-вторых, нанокомпьютеры окажутся полезны для манипуляций с объектами в наномасштабе. Самые многообещающие возможности находятся внутри тела. Я уже рассказывал о компьютере, работающем в глазу. Нанокомпьютеры могут быть помещены в кровеносную систему для мониторинга кровообращения или для помощи при постановке диагноза. Одно такое маленькое устройство не способно на многое, но их совокупность, которую можно поместить в таблетку, позволит снизить уровень холестерина или уничтожить камни в почках.
Некоторые учёные говорят о перспективном использовании энергии органических молекул для построения биоразлагаемых компьютеров, которые смогут работать внутри живых тканей, доставляя в них лекарства или обезвреживая раковые клетки. Вид нашего тела, которое постоянно ремонтируют изнутри множество невообразимо маленьких компьютеризованных устройств, представляет собой чрезвычайно привлекательное зрелище.
В случае реализации это может стать самым большим прорывом в медицине за всё время её существования. Кроме того, нанокомпьютеры будут применимы во многих областях, от очистки внутренностей труб до создания новых лекарств молекула за молекулой.
Всё это пока остаётся достаточно отдалённой перспективой, так как существуют проблемы с питанием, связью и созданием таких устройств. Но кто ещё 60 лет назад мог представить, что компьютеры будут маленькими и достаточно мощными, чтобы делать всё то, что мы сейчас принимаем как данность, — например, позволять выходить в интернет при помощи небольшого телефона почти в любой точке мира?
Лично я не в силах изобрести компьютер, который был бы меньше и сложнее, чем счёты, но есть люди, которые это могут. Впрочем, я придумал кое-что получше: я приму участие в создании самого совершенного компьютера — человеческого мозга. Даже полностью выросший человеческий мозг удивительно мал для своих возможностей — это самый мощный известный компьютер.
Комментарии
Подписаться